######## Spades ######## ************** Introduction ************** Spades is an assembly toolkit containing various assembly pipelines. ********** Versions ********** - 3.15.4 - 3.15.5 If you require a version newer than these two, please visit the `SPAdes download and installation page `_ As of 2024-12-10, the latest version available is 4.0.0. ********** Commands ********** - coronaspades.py - metaplasmidspades.py - metaspades.py - metaviralspades.py - plasmidspades.py - rnaspades.py - rnaviralspades.py - spades-bwa - spades-convert-bin-to-fasta - spades-core - spades-corrector-core - spades-gbuilder - spades-gmapper - spades-gsimplifier - spades-hammer - spades_init.py - spades-ionhammer - spades-kmercount - spades-kmer-estimating - spades.py - spades-read-filter - spades-truseq-scfcorrection - truspades.py ************* Example job ************* Adjust slurm options based on job requirements (`slurm cheat sheet `_): .. code:: #!/bin/bash #SBATCH -p partitionName # batch, gpu, preempt, mpi or your group's own partition #SBATCH -t 1:00:00 # Runtime limit (D-HH:MM:SS) #SBATCH -N 1 # Number of nodes #SBATCH -n 1 # Number of tasks per node #SBATCH -c 4 # Number of CPU cores per task #SBATCH --mem=8G # Memory required per node #SBATCH --job-name=spades # Job name #SBATCH --mail-type=FAIL,BEGIN,END # Send an email when job fails, begins, and finishes #SBATCH --mail-user=your.email@tufts.edu # Email address for notifications #SBATCH --error=%x-%J-%u.err # Standard error file: --.err #SBATCH --output=%x-%J-%u.out # Standard output file: --.out module purge module load spades/XXXX ### you can run *module avail spades* to check all available versions ******************************** Using Multi-Threads for SPAdes ******************************** SPAdes is a genome/metagenome assembler designed to efficiently utilize multiple CPU threads. Multi-threading significantly accelerates SPAdes by parallelizing computationally intensive steps like k-mer construction, error correction, and graph traversal. How Multi-Threading Works in SPAdes: - **Parallelization**: SPAdes parallelizes tasks like k-mer generation, graph construction, and assembly across the threads specified with ``--threads``. - **Not Fully Parallel**: Some parts of SPAdes, such as graph simplification and certain I/O operations, are not fully parallelizable. As a result, doubling the number of threads may not always halve the runtime. Best Practices for Using Multi-Threads with SPAdes: - **Determine Dataset Size**: - Small datasets (e.g., bacterial genomes): 4–8 threads. - Medium datasets (e.g., microbial communities): 8–16 threads. - Large datasets (e.g., human or metagenomic assemblies): 16–32 threads. - **Match SLURM Resources**: - Ensure SLURM’s ``--cpus-per-task`` matches the ``--threads`` argument in SPAdes. - **Monitor Memory Usage**: - Check memory usage during assembly to ensure no resource wastage. - **Run Test Assemblies**: - For new datasets, run SPAdes with fewer threads initially to estimate runtime and memory requirements. .. code:: bash #!/bin/bash #SBATCH --job-name=SPAdes_Assembly #SBATCH --output=spades.%j.out #SBATCH --error=spades.%j.err #SBATCH --time=00-24:00:00 # Set appropriate runtime #SBATCH --cpus-per-task=16 # Match threads to SPAdes --threads #SBATCH --mem=64G # Allocate sufficient memory #SBATCH -p batch # Partition to use module load spades/3.15.5 # Run SPAdes spades.py --meta \ -1 /path/to/reads_R1.fastq.gz \ -2 /path/to/reads_R2.fastq.gz \ -o /path/to/output \ --threads 16 \ --memory 64 Using multi-threads is crucial for speeding up SPAdes, but it’s important to balance thread count with available memory, I/O capacity, and the complexity of your dataset to ensure efficient and successful assemblies. ***************** Reference links ***************** `SPAdes github repo `_ `SPAdes manual `_ `SPAdes paper `_ `metaSPAdes paper: a new versatile metagenomic assembler `_